
Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 2; January-March, 2017, pp. 157-161
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Genetic Algorithm Performance Assessment by
Varying Population Size and Mutation Rate in

Case of String Reconstruction
Ganpati Prasad1, Darpan Singh2, Abhinav Mishra3 and Vishal H. Shah4

1,2,3,4Birla Institute of Technology MESRA, Ranchi, Jharkhand, India-835215
E-mail: 1ganpati10714@gmail.com, 2darpan466@gmail.com, 3mishra.ab@hotmail.com, 4vishalhshah@bitmesra.ac.in

Abstract—This paper is aimed at studying about parameters of
genetic algorithm. Population size and mutation rate are the two
parameters which are being varied to check its effects on the
solution. The quality as well as time taken to arrive at the solution is
studied carefully. MATLAB is used for implementing genetic
algorithm. Reason for choosing MATLAB is it executes array
computations very fast and our problem statement have large
computations of arrays. A simple problem statement of
reconstructing a given string is taken and genetic algorithm is
implemented on it. Tournament is conducted to decide the parent’s
pool. Individuals in parent’s pool reproduce by uniform crossover
method. The child of parents undergo mutation with a given
probability. This forms a new generation. This whole process is
repeated until stagnation in quality of solution takes place or the
required solution is found.

1. INTRODUCTION

In 1950s a professor at University of Michigan, John Holland
studied the theory of evolution by Charles Darwin and tried to
simulate the same theories on computer. These are known as
genetic algorithms [1]. There are three principles of Darwinian
evolution which must be present in a traditional genetic
algorithm. These three principles are as follows:

Heredity: If the parent is able to survive long enough and
reproduces with other individuals then, some characteristics of
the parent must be present in the child. This property is known
as heredity.

Variation: The population must have a variety in
characteristics for evolution to occur. If each and every
individual would be possessing same traits, then evolution
would never take place. Every child would look like the parent
and since every parent has same characteristics, combination
of different traits would not occur.

Selection: A selection mechanism must be in place to decide
which individual gets the chance to pass on its set of traits.
This principle is known as “survival of the fittest”. The term
fittest is misleading. It doesn’t mean bigger, stronger or faster.
“Fittest” means the individual who has best adapted according

to the requirement of the environment. Individuals must be
tested to determine whose traits are better suited for the
environment. The fitter individuals have a greater likelihood
of surviving and reproducing.

These three principles form the essence of an implementation
of genetic algorithm. But a genetic algorithm itself is divided
into three parts [1]. These three parts are as follows:

1.1. Initialization:

This part of algorithm occurs only once i.e. at the beginning. It
is the part where variation principle is applied. We generate a
population with a variety of traits. Larger the population,
higher is the diversity. If population size is less, there will be
less combination of individuals possible, hence less chances of
evolving to optimal solution. An individual is represented by a
set of properties, characteristics or traits, this set is virtual
DNA of the individual. Now this DNA has two kinds of
representation. One is genotype and another is phenotype [1].
Genotype is the actual digital information which gets passed
on generation to generation. On the other hand, phenotype is
the visual expression of digital information. For example, 255
represents white color, whereas 0 represents black color. Here,
0 and 255 are genotypes, for which white and black are
phenotypes respectively. In some cases, genotype and
phenotype are same. The problem statement we have taken is
of reconstructing a given string. In this problem, genotype and
phenotype are same. The DNA data itself is a string of
characters and the expression of that data is that very string.

1.2. Selection:

This part of algorithm is repeated for each generation. In this
part, we apply selection principle of Charles Darwin. Selection
procedure is divided into two parts, fitness evaluation, creating
parent’s pool [2].

1.2.1 Fitness evaluation: Fitness evaluation is done so that we
can numerically determine which individual is better than
others. The input of the function are the individuals of the

Ganpati Prasad, Darpan Singh, Abhinav Mishra and Vishal H. Shah

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 2; January-March, 2017

158

population and output are the numerical fitness scores of the
respective individuals.

1.2.2 Creation of parent’s pool: When every individual is
assigned a fitness value, selection of individuals is done on the
basis of their fitness value. There are various methods of
selection, such as:

Tournament: A series of match is conducted between
randomly picked individuals, winner of each match is selected
as a parent [1][2].

Truncation: Individuals are sorted according to their fitness
values and first fifty percent are selected as parents, rest are
removed from the population. This forces elitism, but can
cause premature convergence of the genetic algorithm [2].

Roulette wheel method: All the individuals are assigned a
probability of selection on the basis of their fitness value. This
gives an individual with very low fitness value some chance to
pass on its DNA [1]. This method is good for sustaining
variation in population. On the basis of this probability,
selection of individuals takes place [2].

1.3. Reproduction:

After selection of individuals has taken place, process of
reproduction occurs. Here heredity principle is applied. The
child of parent individuals must have DNA of the parents
involved up to some extent. There are two ways of
reproduction. Single parent, where only one parent is needed
for reproducing a child. Here child is clone of parent, except
for a few traits where mutation occurs. Mutation is an operator
of genetic algorithm through which some part of DNA is
randomly changed [1][9]. In nature, it occurs because of error
in copying parent’s DNA. In genetic algorithms, mutation
operator is introduced to keep variation in population. Apart
from single parent reproduction, two parent reproduction also
takes place. In this type of reproduction, crossover of DNA
takes place. Crossover can be uniform, one point or two point.

Uniform crossover: Here, both parents contribute equally to
child’s DNA, but the part of the DNA which will be copied is
completely random. Also, the parts of DNA being copied may
or may not be continuous. From a no. of points, DNA will be
copied from each parent.

One-point crossover: Here one parent may contribute less
towards the child. This happens because, up to a single point
first parent’s DNA is copied. After the point, second parent’s
DNA is copied. The percentage of DNA contribution of each
parents depend upon the point of crossover. If it is a midpoint
then, contribution would be equal.

Two-point crossover: Here same principle from one point
crossover is present with slight modification. Here, two points
of crossover are present. Up to first point, first parent’s DNA
is copied, after first point second parent’s DNA is copied.
After reaching second point, again first parents DNA is
copied.

Mutation: After crossover is completed, slight mutation is
introduced in the DNA of the child being reproduced.
Mutation is not a compulsory step. But mutation keeps
variation in population alive. Mutation is described in terms of
rate. If we have a mutation rate of 1%, this means that for bit
of DNA generated from crossover, there is a 1% chance that it
will mutate [9]. In our problem statement of reconstructing
strings, it means that for each character of string, there is 1%
chance that a certain character would change to new random
character. The mutation rate is kept very low because a higher
rate would change the fitter parts of the DNA received from
parents, disrupting the process of evolution.

1.4. Overview of the described genetic algorithm

Step 1: Initialize: Create a population of N individuals, each
with randomly generated DNA.

Step 2: Selection. Evaluate the fitness of each individual of the
population and build a mating pool.

-Stop the algorithm if any of the following evaluates to true:

 If fitness of individuals has reached stagnation
 If required level of fitness is achieved
 If time of genetic algorithm is over
 If pre-decided number of generation have passed.

Step 3: Reproduction. Repeat N times:
a. Pick two parents with probability according to relative
fitness.
b. Crossover—create a “child” by combining the DNA of
these two parents.
c. Mutation—mutate the child’s DNA based on a given
probability.
d. Add the new child to a new population.

Step 4. Replace the old population with the new population
and return to Step 2.

Step 5: Display the fittest individual’s phenotype.

 It can be easily interpreted that population size and
mutation rate are one of the key parameters of a genetic
algorithm [8]. In this paper, our aim is to vary mutation rate
and population size, and evaluate performance of genetic
algorithm on a simple problem of reconstructing a given
string. The paper is organized in the following way; section II
consists of problem statement and method of implementing
genetic algorithm on it; in section III, population size and
mutation rate are varied and graphs are plotted to evaluate the
performance of genetic algorithm; section IV comprises of
conclusive remarks.

2. PROBLEM FORMULATION

The problem statement is as follows, a string is given, which
needs to be reconstructed using genetic algorithm. Main

Genetic Algorithm Performance Assessment by Varying Population Size and Mutation Rate in Case of String Reconstruction 159

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 2; January-March, 2017

purpose of choosing this problem statement is to evaluate the
performance of genetic algorithms by varying parameters. The
string we are considering for reconstruction is “To be, or not
to be: that is the question”.

First, we define a population size for the run of genetic
algorithm. Then, we check the length of the given string. This
length of the string is the length of the DNA. As our genetic
algorithm instructs us, our first step should be to initialize the
population [4][5][7]. This done by using random integer
generation function of MATLAB. We generate an array of
dimensions PopulationSize-by-DNAlength. Through random
integer function values in the array is completely random. This
array represents our population from current generation.

Second step in genetic algorithm is selection. To perform
selection, we first need to formulate a fitness function for the
problem statement. Our fitness function is as follows:

The fitness function starts by converting the characters into
integers and the subtracting each element of each member of
the population from each element of the target string. The
function then takes the absolute value of the differences and
sums each row and stores the function as a mx1 matrix. The
output of the function is the absolute difference between the
number of characters between the target string and the
individual being evaluated. As the absolute difference
decreases the fitness of that particular individual increases.
When the absolute difference between the individual and the
target reaches zero, individual becomes the exact copy of the
target string.

After each and every individual is assigned a fitness value,
parent’s pool is made by the process of selection. In our
problem formulation, we have implemented tournament
selection process.

In tournament selection process, number of matches being
played is double the number of individuals in the population.
We randomly choose any four individuals per match. The
fittest individual out of the four, is declared winner of match
and put in parent’s pool. At the end of tournament, we have
one winner from each match, which means total number of
individuals in winner’s pool (AKA parent’s pool) is double the
number of population size.

To reproduce, crossover is performed between the individuals
present in the parent’s pool. Individuals in odd index places,
perform crossover with the individuals in even index places.
We are performing uniform crossover, through which, child
we have fifty percent string characters from first parent and
rest fifty percent from second parent.

After crossover, mutation operator is applied. A mutation rate
is pre-defined for a run of genetic algorithm. According to
mutation rate, randomly any character in individual string is
changed.

This forms the next generation of population. The previous
generation is discarded and the newly formed generation

replaces it. The process of creating new generations is
continued until required string is formed.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Varying population size:

To evaluate the performance of genetic algorithm, the
population size was varied from 2 to 5000. All the other
parameters were kept constant. All the experiments were
performed on Intel Core i5 2.30 Gigahertz quadcore processor.
8 Gigabytes of RAM was installed on the computer. Operating
System was Windows 10. MATLAB 2016 was used to
perform the simulations. Mutation rate was kept constant at
0.01. Graph below is plotted on a semi logarithmic graph. X-
axis represents populations size, Y-axis represents time
elapsed in seconds. In case, improvement of fitness levels
stopped in a genetic algorithm, the program was terminated at
generation 10,000. In figure 1, it can be observed that, a very
small population size causes an increase in computation time.
This happens because of a very simple reason. In a very small
population, diversity is very low. This causes less crossover
combinations possible for child reproduction. If there are more
crossover combinations possible, the genetic algorithm would
not converge to local optima, and search for global optima.
When the populations size is increased, the computation time
decreases drastically. But after a certain point, increasing the
populations size causes the computation time to increase
again. This happens when population size becomes more than
1000. After this point the number of individuals that need to
be evaluated under fitness criteria is too much for computer
processor to handle. The spikes which can be seen in the graph
(figure 1) are due to randomness of initialization function. In
certain runs of genetic algorithm, the first generation itself has
the required solution in it. In such cases, computation time is
very low.

Ganpati Prasad, Darpan Singh, Abhinav Mishra and Vishal H. Shah

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 2; January-March, 2017

160

In some other runs, the randomly generated initial population
doesn’t have the favorable solutions or the required diversity.
In such cases, the optimal solution is reached only after,
several generations of mutations. This also causes a drastic
increase in computational time. Controlling these conditions
are beyond the scope of a genetic algorithm. In most of the
cases, an ideal population size should be between, 100 to
1000.

3.2 Varying mutation rate:

To evaluate the performance of genetic algorithm the mutation
rate was varied from 0.01% to 5%. All the other parameters
were kept constant. All the experiments were performed on
Intel Core i5 2.30 Gigahertz quadcore processor. 8 Gigabytes
of RAM was installed on the computer. Operating System was
Windows 10. MATLAB 2016 was used to perform the
simulations. Population size was kept constant at 1000. Graph
below is plotted on a semi logarithmic graph. X-axis
represents mutation rate, Y-axis represents time elapsed in
seconds. In case, improvement of fitness levels stopped in a
genetic algorithm, the program was terminated at generation
10,000. In figure 2, it can be observed that, at 0% mutation
rate, it took more than 15 seconds to find the optimal solution,
whereas average computation time is around 2.5 seconds. The
reason for such a high computation time, is absence of
background diversity. There was only a certain level of
diversity when the first generation was created. Without any
mutation, diversity of population was reduced with each
passing generation, hampering the process of evolution. In the
latter part of graph, it can be observed that, very high mutation
rate was not very beneficial either. It negated the evolutionary
process itself. The many fit genes of the child were changed
randomly. The middle part of the graph, has the lowest
computation time. So, the ideal mutation rate, should be
between, 0.001 to 0.01.

4. CONCLUSION

After, an exhaustive study of parameters of genetic
algorithms, it can be conclusively said that, population size
and mutation rate are one of the most influential parameters of
genetic algorithms. If population size is very low, then, there
won’t be enough diversity to compute a global optimum
solution of a given problem. On the other hand, if populations
size is very large, then it would not contribute significantly
towards the quality of the solution. An adequate population
size gives a good quality solution in less computation time.
For the problem statement considered in this paper, an
optimum population size is from 100 to 1000 individuals per
generation. The other, parameter studied in this paper was
mutation rate. A very low mutation rate causes pre-mature
convergence of the genetic algorithm to a local optimum. On
the other hand, if mutation rate is very high, the algorithm
searches for a global optimum in random directions. This
defeats the purpose of evolutionary process itself. For the
given problem statement, an optimum mutation rate should be
between 0.1% to 1%.

The parameter values of a genetic algorithm largely depend on
the problem statement itself. But through a little hit and trial,
luck and study of genetic algorithms, adequate parameters can
be found easily for any problem statement. It should be
understood that, using good genetic algorithm parameters can
immensely improve the performance of a genetic algorithm. In
a similar problem statement [6] of reconstruction of a given
image, fitness criteria can be defined using structural
similarity index (SSIM) [3]. By using SSIM index, a quality
reconstructed image is obtained in a less computation time.

REFERENCES

[1] Mitchell Melanie, “An introduction to genetic algorithms”, fifth
printing, 1999

[2] Tobias Blickle, Lothar Thiele, “A comparison of selection
schemes used in genetic algorithms”, Swiss federal institute of
technology (ETH) Gloriastrasse 35,8092 Zurich Switzerland,
version 2, 11 December 1995

[3] Zhou Wang, Hamid Rahim Sheikh, Eero P. Simoncelli, “image
quality assessment: from error visibility to structural similarity”,
IEEE transactions on image processing, vol. 13, no. 4, April
2004

[4] Mohammed Mustafa Seddiq, “Blurred image restoration using
genetic algorithm” college technical / Kirkuk, Iraq, 27/4/2006

[5] Jong Bae Kim, Hang Joon Kim, “GA-based image restoration
by isophote constraint optimization”, EURASIP journal on
applied signal processing 2003:3, 238–243 @ 2003 hindawi
publishing corporation

[6] Fengyun Qiu1, Yong Wang1, Mingyan Jiang1, Dongfeng Yuan1,
“Adaptive image restoration based on the genetic algorithm and
Kalman filtering”, D.-S. Huang, L. Heutte, and M. Loog (eds.):
ICIC 2007, CCIS 2, pp. 742–750, 2007 © springer-Verlag berlin
Heidelberg 2007

Genetic Algorithm Performance Assessment by Varying Population Size and Mutation Rate in Case of String Reconstruction 161

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 2; January-March, 2017

[7] Dhirendra Pal Singh, Ashish Khare, “Restoration of degraded
grey images using genetic algorithm”, I.J. Image, graphics and
signal processing, 2016, 3, 28-35

[8] Olympia Roeva, Stefka Fidanova, Marcin Paprzycki, “Influence
of the population size on the genetic algorithm performance in
case of cultivation process modelling”, proceedings of the 2013
federated conference on computer science and information
systems pp. 371–376

[9] Daniel Shiffman, Chapter 9- ‘Genetic Algorithm’, “The Nature
of Code v1.0”.

